电机车

电动车的负极江湖一代枭雄大有来头

发布时间:2022/12/1 16:38:51   
专业治白癜风 http://m.39.net/pf/a_5153471.html

本文系基于公开资料撰写,仅作为信息交流之用,不构成任何投资建议。

这是一篇枯燥的行研内容,字数破万,系公开信息的逻辑性归拢,意在自上而下地对动力电池负极体系做一审视。其中的”下“,我们选取的标的是年末登录A股的全球锂电池人造负极材料龙头——璞泰来(SH:):年末IPO发行价为16.53元,最新股价为.6元,市值超过亿,4年6个月股价翻了7.25倍。

K线走势很美,又是当下的热门赛道,一众投资者春风得意。但鲜有人躬身追问的是,如火如荼的电动车负极材料江湖水有多深?走入其中,你会发现“时代造势,能人造局”这句话诚不我欺:主导中国电动车负极江湖的一方枭雄,出身竟是17年前执掌过百亿公募基金的老牌明星基金经理。

……

01负极江湖主流门派

概述

锂离子电池由正极、负极、电解液和隔膜四部分组成。负极材料,是电池充电过程中锂离子和电子的载体,起着能量的储存与释放作用。

在电池成本中,负极材料约占5%-15%。

公开资料显示,截至年底,新能源汽车的成本中,动力电池占42%,电机10%,电控11%,电驱零部件7%,整车其他部件30%。动力电池所占的42%中,正极17%,负极6%(占动力电池的14%),电解液6%,隔膜13%。

图:三元锂电池材料成本占比。来源:北极星电力网

目前,全球锂电池负极材料以天然/人造石墨为主,新型负极材料如中间相炭微球(MCMB)、钛酸锂、硅基负极、HC/SC、金属锂在快速增长中。

作为锂离子嵌入的载体,负极材料满足工业级乃至车规级要求,需达成以下一长串条件:

√锂离子在负极基体中的插入氧化还原电位尽可能低,从而使电池的输入电压高;

√在基体中大量的锂能够发生可逆插入和脱嵌以得到高容量;

√在插入/脱嵌过程中,负极主体结构尽量少发生变化;

√氧化还原电位随锂离子的插入脱出变化应该尽可能少,这样电池的电压不会发生显著变化,可保持较平稳的充电和放电;

√插入化合物应有较好的的电子电导率和离子电导率,这样可以减少极化并能进行大电流充放电;

√主体材料具有良好的表面结构,能够与液体电解质形成良好的SEI;

√插入化合物在整个电压范围内具有良好的化学稳定性,在形成SEI后不与电解质等发生反应;

√锂离子在主体材料中有较大的扩散系数,便于快速充放电;

√材料应具有较好的经济性以及对环境的友好性。

分类

①石墨类负极

石墨,英文名graphite,质软、有滑腻感,是一种非金属矿物质,具有耐高温、耐氧化、抗腐蚀、抗热震、强度大、韧性好、自润滑强度高、导热、导电性能强等物理、化学性能。

石墨是目前广泛应用的负极材料,但石墨也有很多不足之处。比如石墨的低电位,与电解质形成界面膜,并且容易造成析锂;离子迁移速度慢,故而充放电倍率较低;层状结构的石墨在锂离子插入和脱嵌的过程中会发生约10%的形变,影响电池的循环寿命。

图:负极材料之石墨粉。来源:网络

②非石墨类负极

非石墨类负极主要是软碳和硬碳。硬碳(hardcarbon),亦名:难石墨化碳,是高分子聚合物的热解碳,这类碳在℃的高温也难以石墨化。硬碳有树脂碳、有机聚合物热解碳(PVA,PVC,PVDF,PAN等)、碳黑(乙炔quē黑)。硬碳有利于锂的嵌入而不会引起结构显著膨胀,具有很好的充放电循环性能。

硬碳容量大于常规碳类材料的理论容量,高倍率、循环性能、安全性能优,但是首效低,大概85%,电压平台3.6V,低于石墨的3.7V,成本高。改进思路主要是提高首效(降低比表面积,形成更规则的硬碳;表面包覆,控制SEI形成);提高材料收率(化学工业生产中,投入单位数量原料获得的实际产品产量与理论产品产量的比值),降低成本。

图:负极材料之硬碳。来源:网络

③钛酸锂负极材料

与石墨负极相比,钛酸锂具有更高的嵌锂电位,可有效避免金属锂的析出和锂枝晶的形成。钛酸锂具有远高于石墨的热力学稳定性,不易引起电池的热失控,从而具有更高的安全性。

同时,钛酸锂在锂离子嵌入、脱出的过程中,晶体结构能够保持高度的稳定性,具有极为优良的循环稳定性。此外,钛酸锂还具有优异的低温性能,快速充电能力,较高的性价比,因而在大规模储能等领域具有较好的应用前景。

但钛酸锂的电子和离子电导率低,极大限制了其在大电流充放电条件下的倍率性能。以钛酸锂为负极的锂离子电池在充放电循环和存储过程中,普遍存在“胀气”现象,即电池内部不断产生气体,特别是在高温条件下,胀气更为严重。

图:负极材料之钛酸锂。来源:网络

④硅基负极材料

硅是目前发现的理论克容量最高的负极材料。硅的理论容量高达mAh/g,超过石墨mAh/g十倍以上,充一次电将实现公里以上续航。

硅的电压平台比石墨高,充电时候析锂的可能性小,安全性能上较石墨有很大的优势。

从硅的来源来看,硅是地壳中丰度最高的元素之一,来源广泛,价格便宜。

硅的充放电机理和石墨的充放电机理有所不同,石墨是锂的嵌入和脱嵌,硅则是合金化反应。

硅的最大的缺陷是体积膨胀。在充放电过程中,硅的脱嵌锂反应将伴随大的体积变化(>%),造成材料结构破坏和机械粉化,导致电极材料间及电极材料与集流体的分离,进而失去电接触,致使容量迅速衰减,循环性能恶化。由于剧烈的体积效应,硅表面的SEI膜处于破坏-重构的动态过程中,会造成持续的锂离子消耗,进一步影响循环性能。

因为体积膨胀,限制了硅的现阶段商业化应用。现在解决硅充放电膨胀的方法有纳米硅、多孔硅、硅基复合材料。其中硅、碳复合材料是一个重要研究方向,包括包覆型、嵌入型和分散型。

图:硅/碳负极材料产业链。来源:新材料在线

纳米硅,通过制备成纳米线,使得所有的硅得到利用,并预留膨胀空间,可有效改善循环性能。但是该方法成本较高,工艺制程复杂,制备难度较大。

多孔硅,通过预留硅膨胀空间,改善循环性能。但压实密度较小,工艺流程复杂,制备困难。

硅/碳复合材料,主要是碳包覆,虽然预留了膨胀空间,改善了循环性能,但是压实密度小,工业化难度大。

此处特别指出的是,今年一月份,广汽集团(SH:/HK:)曾对外发布卫星:“石墨烯电池”将于今年9月量产。该消息引爆市场同时引发社会广泛

转载请注明:http://www.aideyishus.com/lkyy/2755.html

------分隔线----------------------------